<em>I'm sorry, it says check all that apply, however there are no choices given. You should edit, and add the multiple choice answers.</em>
My Answer:
Well if the masses of two objects were both decreased, it would result in a decrease in the gravitational force. So I guess the two objects masses would need to be decreased.
Answer:

Explanation:
From the conservation of mechanical energy




Solve to velocity v2




Answer:
diameter = 21.81 ft
Explanation:
The gravitational force equation is:

Where:
- F => Gravitational force or force of attraction between two masses
- M => Mass of asteroid 1
- m => Mass of asteroid 2
- R => Distance between asteroids 1 and 2 (from center of gravity)
We also know that the asteroids are identical so their masses are identical:
Since R is the distance between centers of the two asteroids and their diameters are identical (see attachment), we can conclude that:
We don´t know the mass of the asteroids but we know they are composed of pure iron, so we can relate their masses to their density:
This is going to be helpful because the volume of a sphere is:
And know we can write our original force of gravity equation in terms of the radius of the asteroids:
Now let´s plug in the values we know:
mutual gravitational attraction force
gravitational constant
Solve for r and multiply by 2 because 2r = diameter
Result is d = 21.81 Feet
He reasoned that since parallax could not be observed for celestial objects near the sun, then the earth was stationary. This erroneous assumption was because at the time he had no way of knowing that celestial objects were so far away that their parallax angles were too small to detect.