1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
3 years ago
9

a stone attached to 1m long string is moving with the speed of 5ms in a circle find the centripetal acceleration of the stone​

Physics
1 answer:
Dafna1 [17]3 years ago
5 0

Answer:

The centripetal acceleration of the stone is 5 m/s²

Explanation:

The length of the string to which the stone is attached, r = 1 m

The speed with which the string is rotated, v = 5 m/s

The centripetal acceleration, a_c, is given as follows;

a_c = \dfrac{v^2}{r}

Therefore, the centripetal acceleration of the stone found as follows;

a_c = \dfrac{(5 \ m/s)^2}{1 \ m} = 5 \ m/s^2

The centripetal acceleration of the stone, a_c = 5 m/s².

You might be interested in
Which of the following has the least resistance?<br><br> wood<br> iron<br> copper<br> silver
Neporo4naja [7]

Answer:

Probably wood

Explanation:

6 0
3 years ago
A cruise ship is having troubles with buoyancy. What is a reasonable solution? A. Increase the weight of the ship above water B.
Setler [38]

If a cruise ship is having troubles with buoyancy, then spread the weight of the ship over a greater volume.

Answer: Option D

<u>Explanation: </u>

Buoyancy is the upward thrusting phenomenon of water acting on any object immersed partially or fully in water body. Hence, it creates the buoyant forces that is inversely proportionate to the immersing body's density. If the immersing body's density is higher than the density of the immersing medium then the body will get completely immersed in the water.

Similarly, in case of less, the buoyant forces act on the body will prevent it from complete immersion and allow it to float on water. Mostly cruise ships and other navy vessels use this phenomenon to keep on floating on surface of water.

In the present condition, the solution for buoyancy problem faced by a cruise ship can be solved by decreasing the density of the ship. And the ship's density can be decreased by increasing the ship's volume or by spreading the ship's weight over a greater volume.

5 0
3 years ago
Read 2 more answers
The x vector component of a displacement vector has a magnitude of 146 m and points along the negative x axis. The y vector comp
larisa86 [58]

Answer:  

a) the magnitude of r is  184.62

b) the direction is 37.74° south of the negative x-axis

   

Explanation:

Given the data in the question;

as illustrated in the image blow;

To find the the magnitude of r, we will use the Pythagoras theorem

r² = y² + x²

r = √( y² + x²)

we substitute

r = √((-113)² + (-146)²)

r = √(12769 + 21316 )

r = √(34085 )

r = 184.62

Therefore, the magnitude of r is  184.62

To find its direction, we need to find ∅

from SOH CAH TOA

tan = opposite / adjacent

tan∅ = -113 / -146

tan∅ = 0.77397

∅ = tan⁻¹( 0.77397 )

∅ = 37.74°

Therefore, the direction is 37.74° south of the negative x-axis

7 0
2 years ago
A giraffe is slowly walking across a field. Is it balanced or unbalanced?
vodka [1.7K]
Your answers are correct
3 0
3 years ago
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz. Find the possible range of wavelengths in ai
taurus [48]

Answer:

The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

Explanation:

Given that,

The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.

The speed of sound in air is 343 m/s.

To find,

The wavelength range for the corresponding frequency.

Solution,

The speed of sound is given by the following relation as :

v=f_1\lambda_1

Wavelength for f = 45 Hz is,

\lambda_1=\dfrac{v}{f_1}

\lambda_1=\dfrac{343}{45}=7.62\ m

Wavelength for f = 375 Hz is,

\lambda_2=\dfrac{v}{f_2}

\lambda_2=\dfrac{343}{375}=0.914\ m/s

So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

6 0
3 years ago
Other questions:
  • A toxin that inhibits the production of gtp would interfere with the function of a signal transduction pathway that is initiated
    5·1 answer
  • Which cell process occurs only in organisms that
    7·1 answer
  • Which years had the least sunspot activity?
    13·1 answer
  • Mark Watney begins his day 15 km West and 25 km North of his Mars Habitat. a. Set up a co-ordinate system (draw labeled axis and
    5·1 answer
  • How to work out Initial volume Boyle’s law
    11·1 answer
  • Explain how the particles of solids move
    12·1 answer
  • A peach has a layer of skin, a thick section of fruit, and a pit in the center. Which of these would a peach be a good model for
    8·2 answers
  • А masd<br>Of 500kg a raised to a height of 6m In 30s<br>Find (a) Workdone .​
    13·1 answer
  • When a wave strikes and object and bounces off . ( example echo)
    6·1 answer
  • In a study of momentum during collisions, a student threw an egg at a large sheet of cloth that was suspended from a line and ob
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!