Answer:
Explanation:
Far point = 17 cm . That means he can not see beyond this distance .
He wants to see at an object at 65 cm away . That means object placed at 65 has image at 17 cm by concave lens . Using lens formula
1 / v - 1 / u = 1 / f
1 / - 17 - 1 / - 65 = 1 / f
= 1 / 65 - 1 / 17
= - .0434 = 1 / f
power = - 100 / f
= - 100 x .0434
= - 4.34 D .
Answer:
Explanation:
Let
be the time required to make one revolution.
Let
be the radius of the circular path.
Let
be the distance travelled by ball in one revolution.
As we know,the distance travelled in one revolution is the circumference of the circle.
So,
Given,

Speed of an object moving is circular path is define as the ratio of distance travelled in one revolution to the time taken by the object to complete one revolution.
Let
be the speed of the ball.

So,the speed of the ball is 
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Well I’m not sure because you don’t have anything listed
Answer:
No, because pressure is determined by force and the area over which that force acts.
Explanation: