<u>Answer:</u> The ball is travelling with a speed of 5.5 m/s after hitting the <u>bottle.</u>
<u>Explanation:</u>
To calculate the speed of ball after the collision, we use the equation of law of conservation of momentum, which is given by:

where,
are the mass, initial velocity and final velocity of ball.
are the mass, initial velocity and final velocity of bottle.
We are given:

Putting values in above equation, we get:

Hence, the ball is travelling with a speed of 5.5 m/s after hitting the bottle.
Answer:
Going with the current. You every watch Finding Nemo and the turtle guy says " Going with the waves bro"
Explanation:
Answer:
(7.8) x (9.8 m/s) = 76.44 m/s
during the time he spent falling.
Since his falling speed was zero when he 'stepped' off of the top,
he hit the ground at 76.44 m/s.
That's about 170 miles per hour.
I'll bet he left one serious crater!
I hope this helps too! :D
Explanation:
Answer:
The speed of light is faster in water. The Refractive index of water is 1.3 and the refractive index of glass is 1.5. From the equation n = c/v, we know that the refractive index of a medium is inversely proportional to the velocity of light in that medium. Hence, light travels faster in water.
Answer:
E3 = 3.03 10⁻¹⁶ kJ, E4 = 4.09 10⁻¹⁶ kJ and E5 = 4.58 10⁻¹⁶ kJ
Explanation:
They give us some spectral lines of the Balmer series, let's take the opportunity to place the values in SI units
n = 3 λ = 656.3 nm = 656.3 10⁻⁹ m
n = 4 λ = 486.1 nm = 486.1 10⁻⁹ m
n = 5 λ=434.0 nm = 434.0 10⁻⁹ m
Let's use the Planck equation
E = h f
The speed of light equation
c = λ f
replace
E = h c /λ
Where h is the Planck constant that is worth 6.63 10⁻³⁴ J s and c is the speed of light that is worth 3 10⁸ m / s
Let's calculate the energies
E = 6.63 10⁻³⁴ 3 10⁸ / λ
E = 19.89 10⁻²⁶ /λ
n = 3
E3 = 19.89 10⁻²⁶ / 656.3 10⁻⁹
E3 = 3.03 10⁻¹⁹ J
1 kJ = 10³ J
E3 = 3.03 10⁻¹⁶ kJ
n = 4
E4 = 19.89 10⁻²⁶ /486.1 10⁻⁹
E4 = 4.09 10⁻¹⁹ J
E4 = 4.09 10⁻¹⁶ kJ
n = 5
E5 = 19.89 10⁻²⁶ /434.0 10⁻⁹
E5 = 4.58 10⁻¹⁹ J
E5 = 4.58 10⁻¹⁶ kJ