You take the inverse of the total resistances of each branch and add them up.
So if you have 5ohm, 7 ohm, and 10ohm, you would add
1/5 + 1/7 + 1/10 = 31/70
Then flip it back by either using the <span>x<span>−1</span></span><span> (inverse) key on your calculator or simply dividing 70 by 31 to get a total of 2.26ohms</span>
Answer:
c = e > b = d > a
Explanation:
Given vectors are all unit vectors, therefore they have a magnitude of 1
<h3>Let a, b be two vectors and magnitude of cross product of these two vectors is (magnitude of a) × (magnitude of b) × (sine of angle between these two vectors)</h3>
As all are unit vectors their magnitude is 1 and therefore in this case the cross product between any two vectors depends on the sine of angle between those two vectors
In option a as both the vectors are same, the angle between them will be zero and sin0° will also be 0
In option b angle between those two vectors is 135° and sin135° is 1 ÷ √2
In option c angle between those two vectors is 90° and sin90° is 1
In option d angle between those two vectors is 45° and sin45° is 1 ÷ √2
In option e angle between those two vectors is 90° and sin90° is 1
So by comparison of magnitudes of cross products in each option, the order will be c = e > b = d > a
Answer:

Explanation:
The time the stone takes to fall can be calculated considering only the vertical component with the formula:

Taking the inital height as 0m and downward direction positive, since it departs from (vertical) rest we have:

Which gives us a time:

Horizontally, on that time the stone travelled a distance x=10m, which means its horizontal speed was:

Since <u>this speed is the tangential velocity</u> while whirling, the centripetal acceleration of the stone was:
