Answer:
a. 4,00L
b. 16,00L
c. 12,31L
Explanation:
Avogadro's law says:
a. If initial conditions are 2,30mol and 8,00L and you lose one-half of atoms, that means you have 1,15mol:
<em>V₂ = 4,00L</em>
b. If initial conditions are 2,30mol and 8,00L and you add 2,30mol, that means you have 4,60mol:
<em>V₂ = 16,00L</em>
c. 25,0g of Ne are:
25,0g × (1mol / 20,1797g) = 1,24 moles of Ne. That means you have 2,30mol - 1,24mol = 3,54mol of Ne
<em>V₂ = 12,31L</em>
I hope it helps!
Two independent variables could change at the same time, and you would not know which variable affected the dependent variable
Explanation:
Mole ratio of Oxygen to Hydrogen gas = 1 : 2.
If we use 3.0 moles of oxygen gas, we would need 3.0 * 2 = 6.0 mol of hydrogen gas.
However we only have 4.2 mol of hydrogen. Therefore hydrogen is limiting and oxygen is in excess. (B)
Answer:
d. Sum of product enthalpies minus the sum of reactant enthalpies
Explanation:
The standard enthalpy change of a reaction (ΔH°rxn) can be calculated using the following expression:
ΔH°rxn = ∑n(products) × ΔH°f(products) - ∑n(reactants) × ΔH°f(reactants)
where,
ni are the moles of products and reactants
ΔH°f(i) are the standard enthalpies of formation of products and reactants