Too freaking many... or maybe not many at all
Answer: The concentration of KOH for the final solution is 0.275 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
n = moles of solute
= volume of solution in ml = 150 ml
moles of solute =
Now put all the given values in the formula of molality, we get

According to the dilution law,

where,
= molarity of stock solution = 1.19 M
= volume of stock solution = 15.0 ml
= molarity of diluted solution = ?
= volume of diluted solution = 65.0 ml
Putting in the values we get:


Therefore, the concentration of KOH for the final solution is 0.275 M
Answer:
True
Explanation:
An orbital is is the space occupied by a pair of electrons. The maximum number of electrons in an orbital is 2.
The maximum number of electrons in in the orbitals are two.
For s-sublevel with one orbital we have two electrons
p-sublevel with three orbitals we have six electrons
d - sublevel with five orbitals we have ten electrons
f - sublevel with seven orbitals we have fourteen electrons
Each orbital can take a maximum of two electrons.
<span> A </span>mixture<span> is made from </span>two<span> or more substances that are chemically unlike</span><span> and are not chemically joined. A </span>compound<span> is a substance formed when </span>two<span> or more elements chemically react with each other to ... substances because no new substance is formed, therefore they do not </span>have<span> any fixed properties.</span>
I believe this question has the following five choices to
choose from:
>an SN2 reaction has occurred with inversion of
configuration
>racemization followed by an S N 2 attack
>an SN1 reaction has taken over resulting in inversion
of configuration
>an SN1 reaction has occurred due to carbocation
formation
>an SN1 reaction followed by an S N 2 “backside”
attack
The correct answer is:
an SN1 reaction has occurred due to carbocation formation