Answer:
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Explanation:

initially
0.85 M 0 0
(0.85-x)M x x
The equilibrium constant of reaction = 
The expression of an equilibrium cannot can be written as:
![K_c=\frac{[H^+][CN^-]}{[HCN]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCN%5E-%5D%7D%7B%5BHCN%5D%7D)

Solving for x:
x = 0.0000229
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Answer:
The speed of a roller coaster increases as gravity pulls it downhill and is greatest at its lowest point. Viewed in terms of energy, the roller-coaster-Earth system's gravitational potential energy is converted to kinetic energy
Answer:
1) 40
2) 2.25 moles
3) 17
4) 120
5) Fe₂O₃
Explanation:
Please see attached picture for full solution.
The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au