Hello!
Your answer is A.. Earth's core is the most dense layer and it consists of the outer core and the inner core.
Hope this helps :))
The metal component of the given compound, CrCl3, is chromium. The number of moles per 1 g of chromium is calculated through the equation below,
n = (1 g Cr)(1 mol Cr/51.996 g Cr)
n = 0.0192 mol Cr(3 electrons/1 mol Cr)
n = 0.0577 e-
Determine the number in charge by multiplying with Faraday's constant,
C = (0.0577 mol Cr)((1 F/1 mol e-)(96485 C/ 1F)
C = 5,566.87 C
Then, calculate time by dividing the charge with the current,
t = 5566.87 C/1.5 A
t = 3711.25 minutes
t = 61.84 hours
<span><em>Answer: 61.84 hours</em></span>
Answer:
0.39 moles
Explanation:
To find how many moles are in 50.0 g of CaC₂O₄ you divide the grams of the sample by the molar mass of the compound;
=0.39 mol
The grams cancel out and you are left with moles!
I hope this help ^-^