Sulfur has the coefficient of 2, and nothing else. This indicates Sulfur has 2 atoms.
<span>Oxygen on the other hand, has a subscript of 2, as well as the coefficient of 2. Multiplying those, and you see Oxygen has 4 atoms.
</span>
So your answer is 2
Also remember there is a 2 in front of S meaning there are 2 Sulfurs.
<span>If it was S02 it would be 1 Sulfur as there is no number in front of sulfer. </span>
<span>Remember the number in front of a element, represents how many atoms there are :)</span>
Given the percentage composition of HC as C → 81.82 % and H → 18.18 %
So the ratio of number if atoms of C and H in its molecule can will be:
C : H = 81.82 12 : 18.18 1 C : H = 6.82 : 18.18 = 6.82 6.82 : 18.18 6.82 = 1 : 2.66 ≈ 3 : 8
So the Empirical Formula of hydrocarbon is:
C 3 H 8
As the mass of one litre of hydrocarbon is same as that of C O 2 The molar mass of the HC will be same as that of C O 2 i.e 44 g mol
Now let Molecular formula of the HC be ( C 3 H 8 ) n
Using molar mass of C and H the molar mass of the HC from its molecular formula is:
( 3 × 12 + 8 × 1 ) n = 44 n So 44 n = 44 ⇒ n = 1
Hence the molecular formula of HC is C 3 H 8
Does that help?
Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg
1.strong acid: 2
2.weak acid:6
3.strong base:13
4.weak base:8
5.neutral:7
Despite its appearance, air has a ‘thickness’ so when the sun is high in the sky the light travels through the air on a very much shorter path than when it is low on the horizon.
Imagine that air water and you are below the surface, the light from an overhead sun will be quite sharp and bright, but if lower in the sky it will have to travel through much more water to reach you, so will look less bright and sharp. It ma not seem the same, but the atmosphere is just like very thin water, and a low lying sun will be drastically reduced in strength, so all you will see is a sun with a shift to the red end of the spectrum as all the actinic part will be filtered away by that thicker atmosphere.