Answer:
Your question is missing some information.
But in most of the systems, potential energy and kinetic energy are inversely proportional
Answer:
22.44°C will be the final temperature of the water.
Explanation:
Heat lost by tin will be equal to heat gained by the water

Mass of tin = 
Specific heat capacity of tin = 
Initial temperature of the tin = 
Final temperature =
=T

Mass of water= 
Specific heat capacity of water= 
Initial temperature of the water = 
Final temperature of water =
=T



On substituting all values:

we get, T = 22.44°C
22.44°C will be the final temperature of the water.
Answer: Mass of
produced in this reaction was 6.56 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

Mass or reactants = Mass of
+ mass of
= 16.00 + 64.80 = 80.80 g
Mass of products = mass of aqueous solution + mass of
+ = 74.24 + x g
Mass or reactants = Mass of products
80.80 g = 74.24 + x g
x = 6.56 g
Thus mass of
produced in this reaction was 6.56 grams
Answer:
<h2>The answer is 7.14 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of metal = 25 g
volume = final volume of water - initial volume of water
volume = 28.5 - 25 = 3.5 mL
It's density is

We have the final answer as
<h3>7.14 g/mL</h3>
Hope this helps you