Some acids are capable of drawing water out of an object. This process is called dehydration.
Hope this helped!
12: B, since it said the temperature is below 3,500
Answer is: 8568.71 of baking soda.
Balanced chemical reaction: H₂SO₄ + 2NaHCO₃ → Na₂SO₄ + 2CO₂ + 2H₂O.
V(H₂SO₄) = 17 L; volume of the sulfuric acid.
c(H₂SO₄) = 3.0 M, molarity of sulfuric acid.
n(H₂SO₄) = V(H₂SO₄) · c(H₂SO₄).
n(H₂SO₄) = 17 L · 3 mol/L.
n(H₂SO₄) = 51 mol; amount of sulfuric acid.
From balanced chemical reaction: n(H₂SO₄) : n(NaHCO₃) = 1 :2.
n(NaHCO₃) = 2 · 51 mol.
n(NaHCO₃) = 102 mol, amount of baking soda.
m(NaHCO₃) = n(NaHCO₃) · M(NaHCO₃).
m(NaHCO₃) = 102 mol · 84.007 g/mol.
m(NaHCO₃) = 8568.714 g; mass of baking soda.
Answer:
8.912x10^-18
Explanation:
-dn/dt = pANa/2piMRT
100 g = initial copper
Number of moles = 100/63.546
= 1.5736
Mass of copper left = 100-10.0168
= 89.9832
Moles = 89.9832/63.546
= 1.4160
dn = 1.4160-1.5736
= -0.1576
dt = 2 hrs
A = 3.23mm² = 3.23x10^-6
M = 63.546
T = 0.0821
T = 1508k
Na = 6.023x10²³
When we insert all these into the formula above
We get
P = 8.912x10^-18atm