<span>The calculation of quantities in chemical equations are called Stoichiometry. Stoichiometry is a branch of chemistry which deals with relative quantities of reactants and products in chemical reactions. The correct answer is 'Stoichoimetry'. I hope this helps you. </span>
Answer:
d. is the hydrostatic pressure produced on the surface of a semi-permeable membrane by osmosis.
Explanation:
Osmosis -
It is the flow of the molecules of solvent from a region of higher concentration towards the region of lower concentration via a semipermeable membrane , is known as osmosis.
Osmotic pressure -
It refers to the minimum amount of pressure , which is required to be applied to the solution in order to avoid the flow of pure solvent via the semipermeable membrane , is referred to as osmotic pressure.
Or in simple terms ,
Osmotic pressure is the pressure applied to resists the process of osmosis.
Hence ,
From the given options in the question,
The correct option regarding osmotic pressure is d.
The pH of a solution is 9.02.
c(HCN) = 1.25 M; concentration of the cyanide acid
n(NaCN) = 1.37 mol; amount of the salt
V = 1.699 l; volume of the solution
c(NaCN) = 1.37 mol ÷ 1.699 l
c(NaCN) = 0.806 M; concentration of the salt
Ka = 6.2 × 10⁻¹⁰; acid constant
pKa = -logKa
pKa = - log (6.2 × 10⁻¹⁰)
pKa = 9.21
Henderson–Hasselbalch equation for the buffer solution:
pH = pKa + log(cs/ck)
pH = pKa + log(cs/ck)
pH = 9.21 + log (0.806M/1.25M)
pH = 9.21 - 0.19
pH = 9.02; potential of hydrogen
More about buffer: brainly.com/question/4177791
#SPJ4
Answer:
Repulsive forces exist only when atoms are very close to each other. (3/14) "They [the atoms] will approach until both nuclei will simply shove each other because both of them are positive." The balance between the attraction and repulsion forces determines how close the atoms can get. The relationships between the magnitude and direction of repulsive and attractive forces. A stable state of a bond is when attractive forces balance repulsion forces. “A stable state between two atoms is when they attract each other with a force that equals the force that they repel each other.”