<span>The half-life of 9 months is 0.75 years.
2.0 years is 2.0/0.75 = 2.67 half-lives.
Each half-life represents a reduction in the amount remaining by a factor of two, so:
A(t)/A(0) = 2^(-t/h)
where A(t) = amount at time t
h = half-life in some unit
t = elapsed time in the same unit
A(t)/A(0) = 2^(-2.67) = 0.157
15.7% of the original amount will remain after 2.0 years.
This is pretty easy one to solve. I was happy doing it.</span>
If you think of it endothermic is when there is energy needed for the reaction to occur and exothermic is when the reaction releases energy
Answer:
cinnamic acid - 150 mg
cis-stilbene - 100 μL
trans- stilbene - 100 mg
pyridinium tribromide - 200-385 mg
For this data:
moles of cinnamic acid = 0.150 g/148.16 g/mol = 0.001 mols
Theoretical mass of dibromoproduct formed = 0.001 mol x 307.97 g/mol = 0.312 g
cis-stilbene (100 ul = 0.1 ml)
moles of cis-stilbene = 0.1 ml x 1.01 g/mol/180.25 g/mol = 0.00056 mols
Theoretical mass of dibromoproduct formed = 0.00056 mol x 340.05 g/mol = 0.19 g
trans-stilbene
moles of tran-stilbene = 0.1 g/180.25 g/mol = 0.00055 mols
Theoretical mass of dibromoproduct formed = 0.00055 mol x 340.05 g/mol = 0.19 g
Explanation:
Answer: C
Explanation:
The one closest to the atomic center, there is a single 1s orbital that can hold 2 electrons. At the next energy level, there are four orbitals.
Answer:
could be reduced by one-quarter.
Explanation: