About 5% of high school seniors reportmisusing prescription
The correct answer is a. This is because the pH of a solution is defined as -log10(concentration of H+ ions). An inverse logarithmic scale such as this means that a solution with a lower concentration of H+ ions will have a higher pH than one with a higher concentration. Therefore we know that the pH of the second sample will be higher than the first.
Since the logarithmic scale has the base 10, a change by 1 on the scale is a consequence of multiplication/division of the H+ concentration by a factor of 10. As the scale is inverse, this means that a decrease of concentration by factor 1000 is equivalent to increasing the pH by (1000/10) = 3.
First, we have to get how many grams of C & H & O in the compound:
- the mass of C on CO2 = mass of CO2*molar mass of C /molar mass of CO2
= 0.5213 * 12 / 44 = 0.142 g
- the mass of H atom on H2O = mass of H2O*molar mass of H / molar mass of H2O
=0.2835 * 2 / 18 = 0.0315 g
- the mass of O = the total mass - the mass of C atom - the mass of H atom
= 0.3 - 0.142 - 0.0315 = 0.1265 g
Convert the mass to mole by divided by molar mass
C(0.142/12) H(0.0315/2) O(0.1265/16)
C(0.0118) H(0.01575) O(0.0079) by dividing by the smallest value 0.0079
C1.504 H3.99 O1 by rounding to the nearst fraction
C3/2 H4/1 )1/1 multiply by 2
∴ the emprical formula C3H8O2
Latent heat of melting is the energy that a solid absorbs to change its phase as its liquid. During this process, since all energy is used to change the phase, the temperature is constant.
Here the latent energy of melting for 1 g of ice is 80 calories and that 1 g of ice only absorbed 60 calories. hence the phase is not changed because it requires more 20 calories to melt.
Hence 1 g of ice remains as its solid phase (ice).
Answer:
When hydrogen gas combines with nitrogen to form Ammonia the following chemical reaction will take place. Our equilibrium reaction will be N2(g) + 3H2(g) ⇔ 2NH3(g) + Heat. In this case, Hydrogen and nitrogen react together to form ammonia.
Explanation: