It seems that you have missed the given options for the given statement above whether it is true or false. But anyway, the correct answer would be TRUE. It is true that one <span>of the most effective ways to evaluate data is to try to replicate it. Hope that this answer will help you. </span>
The acceleration of the bike is equal to
opposing the movement (to the right).
Why?
Since after the rider slams the brakes, the bike came to a stop, we know that the acceleration is opposite to the velocity/movement.
We can use the following equation to calculate the acceleration:

So, substituting, we have: (let's consider negative to the left and positive to the right)

The negative sign means that the acceleration's direction is opposite to the movement.
Hence, we have that the acceleration is equal to
opposing the movement (to the right).
Have a nice day!
Answer:
The maximum height of the ball is 20 m. The ball needs 2 s to reach that height.
Explanation:
The equation that describes the height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height of the ball at time t
y0 = initial height
v0 = initial velocity
t = time
g = acceleration
v = velocity at time t
When the ball is at its maximum height, its velocity is 0, then, using the equation of the velocity, we can calculate the time at which the ball is at its max-height.
v = v0 + g · t
0 = 20 m/s - 9.8 m/s² · t
-20 m/s / -9.8 m/s² = t
t = 2.0 s
Then, the ball reaches its maximum height in 2 s.
Now, we can calculate the max-height obtaining the position at time t = 2.0 s:
y = y0 + v0 · t + 1/2 · g · t²
y = 0 m + 20 m/s · 2 s - 1/2 · 9,8 m/s² · (2 s)²
y = 20 m