Answer:
<h2><u>✍</u><u> </u><u>What is quantum physics?</u></h2>
- ➳ It's the physics that explains how everything works; the best description we have of the nature of the particles that make up matter and the forces with which they interact.
- Quantum physics underlies how atoms work, and so why chemistry and biology work as they do.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the wheel is m = 6.9 kg
The radius is 
The radius of gyration is 
The angle is 
The force which the massless bar is subjected to 
Generally given that the wheels rolls without slipping on the flat stationary ground surface, it implies that point A is the center of rotation.
Generally the moment of inertia about A is mathematically represented as

Here
is the moment of inertia about G with respect to the radius of gyration which is mathematically represented as

=>
=>
=>
Generally the torque experienced by the wheel is mathematically represented as

=> 
=> 
Generally this torque is also mathematically represented as

=> 
=> 
From the given information in the question, the correct option is Option 1: 14 cm.
A non-stretched elastic spring has a conserved potential energy which gives it the ability to perform work. The elastic potential energy can be expressed as:
PE =
k 
Where PE is the energy, k is the spring constant and x is extension.
i. Given that: PE = 10 J and x = 10 cm, then;
PE =
k 
10 =
k 
20 = 100k
k = 0.2 J/cm
ii. To determine how far the spring is needed to be stretched, given that PE = 20 J.
PE =
k 
20 =
(0.2) 
40 = 0.2 
= 200
x = 
= 14.1421
x = 14.14 cm
So that;
x is approximately 14.00 cm.
Thus, the spring need to be stretched to 14.00 cm to give the spring 20 J of elastic potential energy.
For more information, check at: brainly.com/question/1352053.
Answer:
27.1 m/s
Explanation:
Given that at a race car driving event, a staff member notices that the skid marks left by the race car are 9.06 m long. The very experienced staff member knows that the deceleration of a car when skidding is -40.52 m/s2.
Using third equation of motion,
V^2 = U^2 + 2aS
Since the car is decelerating, the final velocity V = 0
Substitute all the parameter into the equation above,
0 = U^2 - 2 * 40.52 * 9.06
U^2 = 734.22
U = 
U = 27.096
U = 27.1 m/s approximately
Therefore, the staff member can estimate for the original speed of the race car to be 27.1 m/s if it came to a stop during the skid