Answer:
Final energy = Uf = initial energy × d₂/d₁
Explanation:
Energy is the ability to do work.
capacitor is an electronic device that store charges
where
V is the potential difference
d is the distance of seperation between the two plates
ε₀ is the dielectric constant of the material used in seperating the two plates, e.g., paper, mica, glass etc.
A = cross sectional area
U =¹/₂CV²
C =ε₀A/d
C × d=ε₀A=constant
C₂d₂=C₁d₁
C₂=C₁d₁/d₂
charge will 'q' remains same in the capacitor, if the capacitor was disconnected from the electric potential source (v) before the separation of the plates was replaced
Energy=U =(1/2)q²/C
U₂C₂ = U₁C₁
U₂ =U₁C₁ /C₂
U₂ =U₁d₂/d₁
Final energy = Uf = initial energy × d₂/d₁
Answer:
Refraction
Explanation:
A pencil bends when it enters the water media due to the phenomenon of refraction.
- Refraction is one of the properties of waves.
- Refraction of light occurs which it crosses from a region having different density values.
- Water is denser than air.
- As light moves from air to wave it becomes refracted
Answer:
We need to separate the x- and y-components of the applied force. For simplicity, I will denote the direction along the inclined plane as x-direction, and the perpendicular direction as y-direction.

Only the x-component of the applied horizontal force does work on the trunk.
But we need to find the magnitude of the force. We know that the trunk is moving with constant speed. So, the x-component of the applied force is equal to the x-component of the gravitational force plus the force of friction.



The work done by the weight of the trunk can be calculated similarly. Only the x-component of the weight does work on the trunk.

Note that the direction of the weight force is opposite of the direction of the motion, so this force does negative work on the trunk.

The energy dissipated by the frictional force can be found as follows:

Additionally, the sum of work done by the friction and weight is equal in magnitude to the work done by the applied force. This shows that our calculations are consistent.
In the second part of the question, the applied force is on the x-direction. We will follow a similar procedure but a different force.




Explanation:
As you can see above, the answers are the same, although the directions of the applied forces are different. The reason for this situation is that in the first part the y-component does no work.
The answer is Venus, with the density of 5.204 grams per cubic centimeter