<span><span>centic<span>10-2</span></span><span>millim<span>10-3</span></span><span>microu [footnote 2]<span>10-6</span></span><span>nanon<span>10-<span>9
</span></span></span></span>
Answer
given,
mass of ball = 5.93 kg
length of the string = 2.35 m
revolve with velocity of 4.75 m/s
acceleration due to gravity = 9.81 m/s²
T cos θ = mg
T cos θ = 
T cos θ = 58.17






T² - 56.93T - 3383.75 = 0
T = 93.22 N

θ = 51.39°
Explanation:
that the people closer too the head of the table will feel more vibrations than the people at the end of the table. since the vibrations will slow down as they travel farther down the table
Hope this helps!!
Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m