Answer:
In the past, astronomers look into the sky and the universe as a whole with an idea that it is a place where stars are born, transition through their life stages and ultimately die and this is because they couldnt differentiate between stars, quasars and active galaxies because with advanced equipment, they all look similar but as they technological ages arrived, they were able see that they are not the same.
Answer:
P = 5.22 Kg.m/s
Explanation:
given,
mass of the projectile = 1.8 Kg
speed of the target = 4.8 m/s
angle of deflection = 60°
Speed after collision = 2.9 m/s
magnitude of momentum after collision = ?
initial momentum of the body = m x v
= 1.8 x 4.8 = 8.64 kg.m/s
final momentum after collision
momentum along x-direction
P_x = m v cos θ
P_x = 1.8 x 2.9 x cos 60°
P_x = 2.61 kg.m/s
momentum along y-direction
P_y = m v sin θ
P_y = 1.8 x 2.9 x sin 60°
P_y = 4.52 kg.m/s
net momentum of the body


P = 5.22 Kg.m/s
momentum magnitude after collision is equal to P = 5.22 Kg.m/s
C the runners feet pushing against the ground describes the acceleration toward the finish line
Answer:

Explanation:
from the ideal gas law we have
PV = mRT


HERE R is gas constant for dry air = 287 J K^{-1} kg^{-1}


We know by ideal gas law



for m_2



WE KNOW
PV = mRT
V, R and T are constant therefore we have
P is directly proportional to mass



