Answer:
According to Hund's rule and the Aufbau principle in which the orbitals must be filled with electrons, they are not strictly applied in the real universe, because the intermediate and electron-filled atomic orbitals are very stable . Because there are four d-orbitals in universe L, a typical half-full configuration will be xd4 and its full configuration will be xd8, where x is the primary orbital for any specific element. Here is an example:
Vahadium ₂₃V
in real universe: [Ar]₈ 3d³4s²
in universe L: [Ar]₁₈ 3d⁴4s¹
Chromium
in real universe: [Ar]₈ 3d⁵4s¹
in universe L: [Ar]₁₈ 3d⁴4s²
Explanation:
Answer is (b)
2,3,1 is the stoichiometry
The values in front of the elements are the stoichiometric values
(Since Al2Br6 has no value in front, it's considered 1)
The balanced nuclear equation for the β emission of the following isotopes is seen below:
92 92 0
Sr ⇒ Y + e
38 39 -1
<h3>
What is Beta emission?</h3>
This is also known as beta decay in which a beta ray is emitted from an atomic nucleus.
The element formed during the beta emission of strontium is referred to as Yttrium.
Read more about Beta emission here brainly.com/question/16334873
#SPJ1
Answer:
2.91 grams of Magnesium
Explanation:
I put a picture . I used the molar mass of magnesium which can be calculated from the periodic table or simply google it. :) I hope it helps - Enrique