Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.
Answer:
it is easier for them to have an octet of electrons(8e)
Each ion will: obtain the noble gas structure, each atom has high ionization energy
Explanation:
.
Metals. Titanium is very hard, gold is shiny, and copper is ductile(can be pulled into a wire without breaking). <span />
The Molarity of a solution = number of moles / volume.
Volume = 244ml = 0.244L
So it follows that number of moles = Molarity * volume
Number of moles = 0.135 * 0.244 = 0.03945.
Hence the number of moles = 0.03945
Answer:
(a)

(b)

Explanation:
Hello,
(a) In this case, as the reaction is second-ordered, one uses the following kinetic equation to compute the concentration of NOBr after 22 seconds:
![\frac{1}{[NOBr]}=kt +\frac{1}{[NOBr]_0}\\\frac{1}{[NOBr]}=\frac{0.8}{M*s}*22s+\frac{1}{0.086M}=\frac{29.3}{M}\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3Dkt%20%2B%5Cfrac%7B1%7D%7B%5BNOBr%5D_0%7D%5C%5C%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3D%5Cfrac%7B0.8%7D%7BM%2As%7D%2A22s%2B%5Cfrac%7B1%7D%7B0.086M%7D%3D%5Cfrac%7B29.3%7D%7BM%7D%5C%5C)
![[NOBr]=\frac{1}{29.2/M}=0.0342M](https://tex.z-dn.net/?f=%5BNOBr%5D%3D%5Cfrac%7B1%7D%7B29.2%2FM%7D%3D0.0342M)
(b) Now, for a second-order reaction, the half-life is computed as shown below:
![t_{1/2}=\frac{1}{k[NOBr]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BNOBr%5D_0%7D)
Therefore, for the given initial concentrations one obtains:

Best regards.