The volume of SO2 produced at 325k is calculated as below
calculate the moles of SO2 produced which is calculated as follows
write the reacting equation
K2SO3 +2 HCl = 2KCl +H2O+ SO2
find the moles of HCl used
=mass/molar mass = 15g/ 36.5 g/mol =0.411 moles
by use of mole ratio between HCl to SO2 which is 2:1 the moles of SO2 is therefore = 0.411 /2 =0.206 moles of SO2
use the idea gas equation to calculate the volume SO2
that is V=nRT/P
where n=0.206 moles
R(gas constant) = 0.082 L.atm/ mol.k
T=325 K
P=1.35 atm
V=(0.206 moles x 0.082 L.atm/mol.k x325 k)/1.35 atm = 4.07 L of SO2
The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.
Co2
Explanation:
CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (l)
Answer:
Calculate the atomic radii of two touching or overlapping atoms.
Explanation:
No doubt, we can't find the atomic boundary of a single atom, but when atoms are in the form of pairs it becomes very easy to measure the atomic radii of two and then dividing it by 2 to get an estimate of atomic radius of a single atom.
It is also called as covalent radius which is half of the total inter-nuclear distance between two same bonded atoms (Homo-nuclear).
If two adjacent mettalic ions are joined by such pairing then the same half of the distance between the nucleus is termed as metallic radii.
Answer:
grasslands ia the answer!