Answer:
The transition with the greatest distance is 5p → 1s, which is n = 5 going to n = 1. This means this transition also has the largest energy and frequency. Therefore, the electron transition that produces light of the highest frequency in the hydrogen atom is a. 5p → 1s.
Explanation:
The energy requirement order for excitation for different transitions is as follows. n→∏* transition requires lowest energy while σ→σ* requires highest amount of energy
The answer is: Nucleus (same as in plant cells)
Answer:
gaseous CO2 bubbles out of the solution
Explanation:
We already know that the dissolution of a gas in water is exothermic. Hence, when the temperature of a solution containing a gas is increased, the solubility of the gas decreases and the gas bubbles out of the solution.
Similarly, the dissolution of KNO3 in water is endothermic. This implies that the solubility of the solid increases with increasing temperature.
Thus the solid becomes more soluble at 75°.
Answer : The amount of formaldehyde permissible are, 
Explanation : Given,
Density of air =

First we have to calculate the mass of air.



Now we have to calculate the amount of formaldehyde.
Permissible exposure level of formaldehyde = 0.75 ppm = 
Amount of formaldehyde in 7.2 g of formaldehyde = 
Amount of formaldehyde in 7.2 g of formaldehyde = 
Thus, the amount of formaldehyde permissible are, 
To balance chemical equations, you should just remember that the number of atoms of an element in the reactant side must be equal to the number of atoms of the same element in the product side. The order of the substances doesn't matter. What is important that the equation balances.