Answer:
665 g
Explanation:
Let's consider the following thermochemical equation.
2 C₄H₁₀(g) + 13 O₂(g) → 8 CO₂(g) + 10 H₂O(l), ΔH°rxn= –5,314 kJ/mol
According to this equation, 5,314 kJ are released per 8 moles of CO₂. The moles produced when 1.00 × 10⁴ kJ are released are:
-1.00 × 10⁴ kJ × (8 mol CO₂/-5,314 kJ) = 15.1 mol CO₂
The molar mass of CO₂ is 44.01 g/mol. The mass corresponding to 15.1 moles is:
15.1 mol × 44.01 g/mol = 665 g
Answer:
D. 4
Explanation:
Answer and Explanation: Carbon can form a maximum of four covalent bonds. Carbon can share up to four pairs of electrons, therefore, the carbon atom fills its outer energy level and achieves chemical stability.
You always adjust numbers and it will be before the element
so you Neva add or change a subscript
Answer:
2Fe + O₂ -------------------> 2FeO
8 mol Fe produce
8 mol Fe * 2 mol FeO / 2 mol Fe = 8 mol FeO
Mass of FeO = 8 mol FeO * 71.85 g/mol = 574.8 grams FeO
Explanation:
Having 8 mol of Iron means 8 moles of iron oxide can be produced. Each mole of iron oxide has a molecular weight of 71.85 grams. Therefore, 8 moles of iron oxide should weight 574.8 grams.
From the ideal gas law
pv=nRT , n is therefore PV/RT
R is the
R is gas constant =62.364 torr/mol/k
P=500torr
V=4.00l
T=500+273=773k
n={(500 torr x 4.00l)/(62.364 x773k)}=0.041moles
the number of molecules=moles x avorgadro costant that is 6.022x10^23)
6.022 x 10^23) x0.041=2.469 x10^22molecules