Answer:
139.98 g to nearest hundredth.
Explanation:
Using Avogadro's Number:
One mole (167.26 g) of Erbium equates to 6.022141 * 10^23 atoms.
So 5.04 * 10^23 = 167.26 * 5.04/6.022141
= 139,98 g.
This is an application of Le Chatlier's principle: What happens when we add a reagent to one side of an equation? The reaction will shift to the other side. So heat is a reactant and we're adding more of it, the reaction must therefore, shift to the right ( or the products side).
Answer:
N - 1s²2s²2p³
Explanation:
Nitrogen is located in the p-block of the periodic table (groups 13-18) and is on the 2nd period.
The 2nd period tells us the principal energy level (a quantum number) is n = 2. Therefore, it must have already filled up the 1s sublevel.
The groups 13-18 on period 2 tells us that the 2s sublevel is also filled.
Nitrogen is located in Group 15. That means that there are 3 electrons that have filled the 2p sublevel, out of a possible 6.
Therefore, our electron configuration is 1s²2s²2p³
2p³ (Shorthand Config)
[He] 2s²2p³ (Noble Gas Config)
Answer:
Explanation:
Increasing the solute would increase the concentration. Increasing the solvent would decrease the concentration. For instance, if your lemonade was too tart, you would add more water to decrease the concentration. If your tea was too bitter, you could add more sugar to increase the sweetness. Changing the amounts of solute and solvent directly effect the concentration of the solution.
Answer:
State the major concepts behind the kinetic molecular theory of gases.
Demonstrate the relationship between kinetic energy and molecular speed.
Apply the kinetic molecular theory to explain and predict the gas laws.
Explanation: