Answer:
lesser the molar mass of the gas higher the no. of moles included in a certain mass sample. ie at STP more volume is required for the gas having less molar mass.
He has the smallest molar mass.
Therefore bag of He is the biggest.
HELP ME!!!
Project: Modeling potential and kinetic energy
Assignment Summary
For this assignment, you will develop a model that shows a roller coaster cart in four different positions on a track. You will then use this model to discuss the changes in potential and kinetic energy of the cart as it moves along the track.
Background Information
The two most common forms of energy are potential energy and kinetic energy. Potential energy is the stored energy an object has due to its position. Kinetic energy is the energy an object has due to its motion. An object’s kinetic energy changes with its motion, while its potential energy changes with its position, but the total energy stays the same. If potential energy increases, then kinetic energy decreases. If potential energy decreases, then kinetic energy increases.
Potential energy related to the height of an object is called gravitational potential energy. Gravitational potential energy is directly related to an object’s mass, the acceleration due to gravity, and an object’s height.
Materials
One poster board per student Drawing utensils
Assignment Instructions
Step 1: Prepare for the project.
a) Read the entire Student Guide before you begin this project.
b) If anything is unclear, be sure to ask your teacher for assistance before you begin.
c) Gather the materials you will need to complete this project.
Step 2: Create your poster.
a) On the poster board, draw a roller coaster track that starts with one large hill, then is followed by a valley and another, smaller hill.
b) Draw a cart in four positions on the track as outlined below.
i. Draw the first cart at the top of the first hill. Label it A.
ii. Draw the second cart going down the first hill into the valley. Label it B.
iii. Draw the third cart at the bottom of the valley. Assume that the height of the cart in this position is zero. Label it C.
iv. Draw the last cart at the top of the second, smaller hill. Label it D.
c) Make sure that your name is on the poster. Step 3: Type one to two paragraphs that describe the energy of the cart.
a) Type one to two paragraphs describing the changes in potential and kinetic energy of the cart. Be sure to discuss how the potential and kinetic energy of the cart changes at each of the four positions along the track, and explain why these changes occur.
b) Make sure your name is on the document.
c) Later, you will submit this document through the virtual classroom.
Step 4: Evaluate your project using this checklist.
If you can check each criterion below, you are ready to submit your project.
Did you draw a model of a roller coaster track with one large hill, a valley, and a smaller hill?
Did you draw a cart on the track in the four required positions A–D? Did you label the cart at each of the four positions?
Did you type a paragraph describing the changes in potential and kinetic energy of the cart at each of the four positions on the roller coaster track? Did you explain why the changes in potential and kinetic energy occur?
Step 5: Revise and submit your project.
a) If you were unable to check off all of the requirements on the checklist, go back and make sure that your project is complete.
b) When you have completed your project, submit your poster to your teacher for grading. Be sure that your name is on it.
c) Submit the typewritten document through the virtual classroom. Be sure that your name is on it.
Step 6: Clean up your work space.
a) Clean up your work space. Return any reusable materials to your teacher and throw away any trash.
b) Congratulations! You have completed your project.
Electric energy and sink
Answer:
Substrate:alkyl halide
Leaving group: Cl
Organic product: The nitrile
Inorganic product: Cl-
Nucleophile: CN-
Explanation:
An SN2 reaction is a concerted bimolecular reaction. Concerted means that it involves two reactions taking place at the same time while bimolecular means that the rate determining step involves two molecules. The cyanide ion attacks the alkyl halide from the rear. In the transition state, the leaving group (Cl-) is departing while the nucleophile (CN-) is forming a bond to the alkyl halide simultaneously. The alkyl halide is the substrate in the reaction. The organic product is the nitrile shown in the image attached.
The given solution is a mixture of
and
. It acts as a buffer as it is a combination of the weak acid
and it's conjugate base
.
![[Acid] = [HCO_{3}^{-}]=1.0 M](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%20%5BHCO_%7B3%7D%5E%7B-%7D%5D%3D1.0%20M)
![[Base] =[CO_{3}^{2-}]=0.1 M](https://tex.z-dn.net/?f=%5BBase%5D%20%3D%5BCO_%7B3%7D%5E%7B2-%7D%5D%3D0.1%20M)
pH of the buffer solution can be calculated from Hendersen-Hasselbalch equation as below:
![pH=pK_{a}+log\frac{[CO_{3}^{2-}]}{[HCO_{3}^{-}]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%2Blog%5Cfrac%7B%5BCO_%7B3%7D%5E%7B2-%7D%5D%7D%7B%5BHCO_%7B3%7D%5E%7B-%7D%5D%7D)

pH = 10.33+(-1)
= 9.33