Answer:Hence, the bond length in HCl is 125 pm.
Explanation:
Bond length : It is an average distance between the nuclei of two bonded atoms in a molecule.
Also given that bond length is the distance between the centers of two bonded atoms. on the potential energy curve, the bond length is the inter-nuclear distance between the two atoms when the potential energy of the system reaches its lowest value. Beyond this if atoms come closer to each other then their will be repulsion between them.
So, the bond length between the Hydrogen and Chlorine atom in HCl molecule is :
Hence, the bond length in HCl is 125 pm.
Answer:
Magnesium dichloride
HoPe ThIs HeLpS! aNd HaVe A gOoD dAy!
Answer:
6. O₂ + Cu —> CuO
7. H₂ + Fe₂O₃ —> H₂O + Fe
8. O₂ + H₂ — > H₂O
9. H₂S + NaOH —> Na₂S + H₂O
10. Al + HCl —> H₂ + AlCl₃
Explanation:
6. Oxygen gas react with solid copper metal to form copper(II) oxide
Oxygen gas => O₂
Copper => Cu
copper(II) oxide => CuO
The equation is:
O₂ + Cu —> CuO
7. hydrogen gas and iron(III) oxide powder react to form liquid water and solid iron power
hydrogen gas => H₂
Iron(III) oxide => Fe₂O₃
Water => H₂O
Iron => Fe
The equation is:
H₂ + Fe₂O₃ —> H₂O + Fe
8. Oxygen gas react with hydrogen gas to form liquid water
Oxygen gas => O₂
hydrogen gas => H₂
Water => H₂O
The equation is:
O₂ + H₂ — > H₂O
9. Hydrogen sulphide gas is bubbled through a sodium hydroxide solution to produce sodium sulphide and liquid water
hydrogen sulphide => H₂S
sodium hydroxide => NaOH
Sodium sulphide => Na₂S
Water => H₂O
The equation is:
H₂S + NaOH —> Na₂S + H₂O
10. Hydrogen gas and aluminum chloride solutions are produced when solid aluminum react with hydrochloric acid
Aluminum => Al
Hydrochloric acid => HCl
hydrogen gas => H₂
Aluminum chloride => AlCl₃
The equation is:
Al + HCl —> H₂ + AlCl₃
A joule is defined as the amount of energy transferred to an object when a force of one newton acts on the object in the direction of its motion through a distance of one meter (1 newton meter or Nm)
Metallic bonding
Metals consist of giant structures of atoms arranged in a regular pattern. The electrons from the outer shells of the metal atoms are delocalised , and are free to move through the whole structure. This sharing of delocalised electrons results in strong metallic bonding .