1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vera_Pavlovna [14]
3 years ago
11

A research vessel is mapping the bottom of the ocean using sonar. It emits a short sound pulse called "ping" downward. The frequ

ency of the sound is 5600 Hz. In water sound propagates at a speed of 1474 m/s. The sound pulse is then reflected back from the bottom of the ocean and it is detected by the vessel 8.88 s after it was emitted. How deep is the ocean just below the vessel?
Physics
1 answer:
Elena L [17]3 years ago
7 0

Answer:

The ocean is 6485.6m deep when measured from the vessel

Explanation:

v=1474m/s

t=8.88s

let d represent distance from the vessel to the ocean bottom.

an echo travels a distance equivalent to 2d, that is to and fro after it reflects from the obstacle.

velocity=\frac{distance}{time}\\ v=\frac{2d}{t} \\vt=2d\\d=\frac{vt}{2}

d=\frac{1474*8.8}{2}

d= 6485.6m

You might be interested in
An open container holds ice of mass 0.555 kg at a temperature of -16.6 ∘C . The mass of the container can be ignored. Heat is su
s2008m [1.1K]

Answer: A. 23.59 minutes.

              B. 249.65 minutes

Explanation: This question involves the concept of Latent Heat and specific heat capacities of water in solid phase.

<em>Latent heat </em><em>of fusion </em>is the total amount of heat rejected from the unit mass of water at 0 degree Celsius to convert completely into ice of 0 degree Celsius (and the heat required for vice-versa process).

<em>Specific heat capacity</em> of a substance is the amount of heat required by the unit mass of a substance to raise its temperature by 1 kelvin.

Here, <u>given that</u>:

  • mass of ice, m= 0.555 kg
  • temperature of ice, T= -16.6°C
  • rate of heat transfer, q=820 J.min^{-1}
  • specific heat of ice, c_{i}= 2100 J.kg^{-1}.K^{-1}
  • latent heat of fusion of ice, L_{i}=334\times10^{3}J.kg^{-1}

<u>Asked:</u>

1. Time require for the ice to start melting.

2. Time required to raise the temperature above freezing point.

Sol.: 1.

<u>We have the formula:</u>

Q=mc\Delta T

Using above equation we find the total heat required to bring the ice from -16.6°C to 0°C.

Q= 0.555\times2100\times16.6

Q= 19347.3 J

Now, we require 19347.3 joules of heat to bring the ice to 0°C  and then on further addition of heat it starts melting.

∴The time required before the ice starts to melt is the time required to bring the ice to 0°C.

t=\frac{Q}{q}

=\frac{19347.3}{820}

= 23.59 minutes.

Sol.: 2.

Next we need to find the time it takes before the temperature rises above freezing from the time when heating begins.

<em>Now comes the concept of Latent  heat into the play, the temperature does not starts rising for the ice as soon as it reaches at 0°C it takes significant amount of time to raise the temperature because the heat energy is being used to convert the phase of the water molecules from solid to liquid.</em>

From the above solution we have concluded that 23.59 minutes is required for the given ice to come to 0°C, now we need some extra amount of energy to convert this ice to liquid water of 0°C.

<u>We have the equation:</u> latent heat, Q_{L}= mL_{i}

Q_{L}= 0.555\times334\times10^{3}= 185370 J

<u>Now  the time required for supply of 185370 J:</u>

t=\frac{Q_{L}}{q}

t=\frac{185370}{820}

t= 226.06 minutes

∴ The time it takes before the temperature rises above freezing from the time when heating begins= 226.06 + 23.59

= 249.65 minutes

8 0
3 years ago
If an automobile had a 100%-efficient engine, transferring all of the fuel's energy to work, would the engine be warm to your to
svetlana [45]

Answer:

The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.

Explanation:

In this ideal engine, none of these events would happen due to the nature of the efficiency.

We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.

n=W, total/(E, available).

However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.

5 0
3 years ago
Is the relationship between the length of a pendulum and its period is valid at all times?
Stels [109]
Yes it is valid all the times under the consideration of acceleration due to gravity .it is not valid on space where there is no influence of gravity
4 0
3 years ago
A 3.5 kilogram object is swung in a circular path on the end of a 0.4 meter long string. the object makes one trip around the ci
jeyben [28]
Path length is 2*pi*0.4=2.512
Speed=distance/time
Speed =2.512/0.2=12.56m/s
6 0
3 years ago
X rays of wavelength 0.0169 nm are directed in the positive direction of an x axis onto a target containing loosely bound electr
mamaluj [8]

Answer:

a) 4.04*10^-12m

b) 0.0209nm

c) 0.253MeV

Explanation:

The formula for Compton's scattering is given by:

\Delta \lambda=\lambda_f-\lambda_i=\frac{h}{m_oc}(1-cos\theta)

where h is the Planck's constant, m is the mass of the electron and c is the speed of light.

a) by replacing in the formula you obtain the Compton shift:

\Delta \lambda=\frac{6.62*10^{-34}Js}{(9.1*10^{-31}kg)(3*10^8m/s)}(1-cos132\°)=4.04*10^{-12}m

b) The change in photon energy is given by:

\Delta E=E_f-E_i=h\frac{c}{\lambda_f}-h\frac{c}{\lambda_i}=hc(\frac{1}{\lambda_f}-\frac{1}{\lambda_i})\\\\\lambda_f=4.04*10^{-12}m +\lambda_i=4.04*10^{-12}m+(0.0169*10^{-9}m)=2.09*10^{-11}m=0.0209nm

c) The electron Compton wavelength is 2.43 × 10-12 m. Hence you can use the Broglie's relation to compute the momentum of the electron and then the kinetic energy.

P=\frac{h}{\lambda_e}=\frac{6.62*10^{-34}Js}{2.43*10^{-12}m}=2.72*10^{-22}kgm\\

E_e=\frac{p^2}{2m_e}=\frac{(2.72*10^{-22}kgm)^2}{2(9.1*10^{-31}kg)}=4.06*10^{-14}J\\\\1J=6.242*10^{18}eV\\\\E_e=4.06*10^{-14}(6.242*10^{18}eV)=0.253MeV

5 0
3 years ago
Other questions:
  • Irina finds an unlabeled box of fine needles, and wants to determine how thick they are. A standard ruler will not do the job, a
    9·1 answer
  • An element's atomic number is the​
    6·1 answer
  • Determine whether or not each of the following statements is true. If a statement is true, prove it. If a statement is false, pr
    11·1 answer
  • Two workers push on a wooden crate. One worker push with a force of 543 N and the other with a force of 333 N. The mass of the w
    14·1 answer
  • HEELLLPPPPP !
    5·1 answer
  • If a rock has a weight of 30 N on Earth, would its weight be more or less if it was on Jupiter (gravity on Jupiter = 25 m/s2)?
    7·1 answer
  • a car accelerates at a constant rate from 15 m/s to 25 m/s while it travels a distance of 125 m. How long does it take to achiev
    11·1 answer
  • If two objects have the same volume but one has a greater mass, the one with greater mass
    6·1 answer
  • What happens if an object is in orbit and
    11·1 answer
  • Can you solve the issue
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!