That is a lunar eclipse. At night, when the Earth is between the Sun and the moon, the moon would appear to be red. Just for future reference, a solar eclipse is when the Moon is between the Sun and Earth. Speaking of which, check out the solar eclipse this August!
The complete options are;
A. The average kinetic energy of their particles is the same.
B. The total kinetic energy of their particles is equal.
C. Heat flows from the larger object to the smaller object.
D. Heat flows from the object with higher potential energy to the object with lower potential energy.
Answer:
Explanation:
From the relationship between average kinetic energy and temperature, we have the formula;
E_k = (3/2)kT
Where;
k is a constant known as boltzmann constant.
T is known as temperature
We can see that at the same temperature (T), kinetic energy will remain the same because from the formula, E_k depends km only the temperature.
Thus, average kinetic energy of their particles saying that.
Answer:
55 kg
Explanation:
spring constant (k) = 600 N/m
mass of chair (Mc) = 12 kg
period of oscillation of chair and man (T) = 2.1 s
what is the mass of the astronaut (Ma) ?
mass of the astronaut (Ma) = total mass (Mt) - mass of chair (Mc)
where
- total mass (Mt) =
taking π as 3.142
total mass (Mt) =
total mass (Mt) = 67 kg
therefore
mass of astronaut = 67 - 12 = 55 kg
Answer:
it has more molecules than the burning match, which equals MORE total kinetic energy.
Explanation:
Answer:
The rolling basketball has greater momentum.
Explanation:
The momentum of an object is defined as the product of mass and velocity.
Given that the bowling mass has a greater mass than the basketball,
The bowling ball is at rest, so the velocity if the ball is zero.
The basketball is rolling, it has some velocity associated with it.
Therefore, the momentum of the bowling ball is zero.
The basketball has some momentum associated with it.
Hence, the rolling basketball has greater momentum.