Isothermal Work = PVln(v₂/v₁)
PV = nRT = 2 mole * 8.314 J/ (k.mol) * 330 k = 5487.24 J
Isothermal Work = PVln(v₂/v₁) v₂ = ? v₁ = 19L,
1.7 kJ = (5487.24)In(v₂/19)
1700 = (5487.24)In(v₂/19)
In(v₂/19) = (1700/5487.24) = 0.3098
In(v₂/19) = 0.3098
(v₂/19) =

v₂ = 19*

v₂ = 25.8999
v₂ ≈ 26 L Option b.
Answer:
(a) The current should be in opposite direction
(b) The current needed is 39.8 A
Explanation:
Part (a)
Based, on right hand rule, the current should be in opposite direction
Part (b)
given;
strength of magnetic field, B = 370 µT
distance between the two parallel wires, d = 8.6 cm

At the center, the magnetic field strength is twice

R = d/2 = 8.6/2 = 4.3 cm = 0.043 m

Therefore, current needed is 39.8 A
Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
<h3><em>If two objects with the same charge are brought towards each other the force produced will be repulsive, it will push them apart. If two objects with opposite charges are brought towards each other the force will be attractive, it will pull them towards each other.</em></h3><h3><em>hope it helps.... thank you....</em></h3>
I guess it’s d) isobaric mate correct me if I am wrong :D