By equation of motion we have v = u + at
Where u = Initial velocity, v = final velocity, t = time taken and a = acceleration
Here v = 141 m/s, u = 17.7 m/s and t = 6 s
On substitution we will get
141 = 17.7+ 6a
So, a = (141-17.7)/6 = 20. 55 m/
Aceeleration = 20. 55 m/
along north direction.
The principle of a lever is when two equal forces act in opposite directions and ultimately come to a state of equilibrium if distanced properly
i hope that helps?^
Organic materials continue to be the largest component of MSW. Paper and paperboard account for 27 percent and yard trimmings and food account for another 28 percent. Plastics comprise about 13 percent; metals make up 9 percent; and rubber, leather, and textiles account for 9 percent.
Answer:
d. 3332.5 [N]
Explanation:
To solve this problem we will use newton's second law, which tells us that the sum of forces is equal to the product of mass by acceleration.
Here we have two forces, the force that pushes the car to move forward and the friction force.
The friction force is equal to the product of the normal force by the coefficient of friction.
f = N * μ
f = (m*g) * μ
where:
N = weight of the car = 2150*9.81 = 21091.5 [N]
μ = 0.25
f = (21091.5) * 0.25
f = 5273 [N]
Now as the car is moving forward, the car wheels move clockwise. The friction force between the wheels of the car and the pavement must be counterclockwise, i.e. counterclockwise. Therefore the direction of this force is forward. This way we have:
F + f = m*a
F + 5273 = 2150*4
F = 8600 - 5273
F = 3327 [N]
Therefore the answer is d.