Answer:
6.4 g BaSO₄
Explanation:
You have been given the molarity and the volume of the solution. To find the mass of the solution, you need to (1) find the moles BaSO₄ (via the molarity ratio) and then (2) convert moles BaSO₄ to grams BaSO₄ (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given values.
Molarity (mol/L) = moles / volume (L)
(Step 1)
55 mL / 1,000 = 0.055 L
Molarity = moles / volume <----- Molarity ratio
0.5 (mol/L) = moles / 0.055 L <----- Insert values
0.0275 = moles <----- Multiply both sides by 0.055
(Step 2)
Molar Mass (BaSO₄): 137.33 g/mol + 32.065 g/mol + 4(15.998 g/mol)
Molar Mass (BaSO₄): 233.387 g/mol
0.0275 moles BaSO₄ 233.387 g
--------------------------------- x ------------------- = 6.4 g BaSO₄
1 mole
Fe needs to have a positive charge of +3 to balance out -3 Cl
Answer:
3139542g
Explanation:
That's because if you talk about
4.5
moles of sodium fluoride, you would get a really absurd number of grams.
<span>Dispelling the perception that Indian scientists are averse to advertising their work, recipient of this year's Shanti Swarup Bhatnagar prize, Dr.Eknath Ghate and Dr.Amol Dighe, said that in science, it is important to publish and publicise one's work globally. </span>
The proton has a positive charge.