Answer:
Molarity = 0.002 M
Explanation:
Given data:
Mass of calcium chloride = 0.321 g
Volume of water = 1.45 L
Molarity of solution = ?
Solution:
Molarity = number of moles / volume in litter.
We will calculate the number of moles of calcium chloride first.
Number of moles = mass/molar mass
Number of moles = 0.321 g/ 110.98 g/mol
Number of moles = 0.003 mol
Molarity:
Molarity = 0.003 mol / 1.45 L
Molarity = 0.002 M
Answer:
c. The reaction will proceed rapidly from left to right.
Explanation:
The variation of the free Gibbs energy doesn't tell anything about the speed of reaction.
On the other hand, when ΔGo is negative: the reaction is spontaneous, thermodynamically favourable, and the products are more stable than the reactants
It takes exactly 500 seconds for the sun's radiation to reach the earth or about 8 minutes (8.333333333333... to be exact). Just divide 150 million km by 300,000 km/s. Hope this helps
Answer : The amount of heat evolved by a reaction is, 4.81 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the water
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water = 254 g
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(783J/^oC\times -2.28^oC)+(254g\times 4.184J/g^oC\times -2.28^oC)]](https://tex.z-dn.net/?f=q%3D%5B%28783J%2F%5EoC%5Ctimes%20-2.28%5EoC%29%2B%28254g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20-2.28%5EoC%29%5D)

Therefore, the amount of heat evolved by a reaction is, 4.81 kJ