6.21 x 10^3 = (Move decimal point 3 spaces to the right)
6210
6210 (0.1050)
652.05
Answer:
A. 85.6 g
= 0.0856 kg.
B. 0.00027 mol/g
= 0.27 mol/kg.
C. 8.39 %
Explanation:
Given:
Molar concentration = 0.25 M
Molar weight of sucrose = 342.296 g/mol
Density of solution = 1.02 g/mL
Mass of water = 934.4 g.
Density in g/l = 1.020 g/ml * 1000ml/1 l
= 1020 g/l
Mass of solution in 1 l of solution = 1020 g
Mass of solution = mass of solvent + mass of solute
Mass of sucrose = 1020 - 934.4
= 85.6 g of sucrose in 1 l of solution.
A.
Density of sucrose = mass/volume
= molar mass/molar concentration
= 342.296 * 0.25
= 85.6 g/l
Number of moles = mass/molar mass
= 85.6/342.296
= 0.25 mol
B.
Molality = number of moles of solute/mass of solvent
= 0.25/934.4
= 0.00027 mol/g
C.
% mass of sucrose = mass of sucrose/total mass of solution * 100
= 85.6/1020 * 100
= 8.39 %
The volume of the gas that occupy at STP is 165. 28 cm^3
calculation
by use of combined gas law that is P1V1/T1=P2V2/T2, where
P1=84.6 kpa
T1=23.5 +273=296.5 K
V1=215 cm^3
At STP T= 273 K and P= 101.325 Kpa
therefore p2 = 101.325 Kpa and T2 = 272 K V2=?
by making V2 the subject of the formula V2 =T2P1V1/P2T1
V2 = 273 K x 84.6 Kpa x 215 cm^3/ 101,.325 Kpa x296.5 K =165.28 cm^3
NAD serves as the bulk of the oxidative processes in the citric acid cycle's initial electron acceptor.
<h3>What are
electron acceptors in c
itric acid cycle?</h3>
- In the Krebs cycle, which transfers electrons via the electron transport chain with oxygen as the final acceptor, coenzymes like FAD and NAD+ are reduced.
- In a single cycle, three NADH+ and one FADH2 are produced, and when the cycle enters the electron transport chain, 10 ATP is produced.
- The final electron acceptor in the electron transport chain is oxygen. The proton gradient in the intermembrane gap is produced by NADH molecules donating electrons that are then transmitted through a number of different proteins.
<h3>What occurs throughout the citric acid cycle?</h3>
The cycle of citric acid: In the citric acid cycle, a six-carbon citrate molecule is created when an acetyl group from acetyl CoA is joined to a four-carbon oxaloacetate molecule.
Citrate is oxidized over a number of steps, generating two molecules of carbon dioxide for each acetyl group added to the cycle.
learn more about citric acid cycle here
<u>brainly.com/question/14900762</u>
#SPJ4