I would say it’s “donating” so giving up...
Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil
Answer:
6.169 μA
Explanation:
Formula for induced EMF is given by the equation;
EMF = M(di/dt). We are given;
di/dt = 2.5 A/s
M = 19μH = 19 × 10^(-6) H
Thus;
EMF = 19 × 10^(-6) × 2.5.
EMF = 47.5 × 10^(-6) V
Formula for current is;
i = EMF/R. R is resistance given as 7.7 ohms.
Thus; i = 47.5 × 10^(-6)/7.7
i = 6.169 μA
Answer:
the impedance of the circuit is 25.7 ohms.
Explanation:
It is given that,
Voltage, V = 50 volts
Frequency, f = 60 Hz
Resistance, R = 25 ohms
Capacitive resistance, 
Inductive resistance, 
We need to find the impedance of the circuit. It is given by :


Z = 25.7 ohms
So, the impedance of the circuit is 25.7 ohms. Hence, this is the required solution.
Answer:
Transverse wave and Longitudinal wave and Electromagnetic wave
Explanation:
- An inverted wave is a wave in which the vibrations of the particles are perpendicular to the direction of wave motion.
- Longitudinal waves, on the other hand, are waves in which the vibrations of the particles are parallel to the direction of wave motion.
- Electromagnetic waves are waves that do not require medium media for transmission, including radio waves, microwaves, UV lights, etc.
- Most electromagnetic waves are transverse in nature.