Answer:
When two single single bonds separated by a double bond (e.g C=C-C=C or C=C-C=O in the case of 2-cyclohexenone), the effect of resonance among those there bonds will be observed.
Explanation:
Since the Oxygen atom has higher electronegativity, it will cause the electrons in the resonance bonds 'flow' toward the Oxygen atom, so that the C=C will 'lose' some electron. The signal read for that bond will be different from other alkene structure.
Attachment is the resonance structure of 2-cyclohexene.
<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).
Answer:
The unit cell edge length for the alloy is 0.405 nm
Explanation:
Given;
concentration of Ag,
= 78 wt%
concentration of Pd,
= 22 wt%
density of Ag = 10.49 g/cm³
density of Pd = 12.02 g/cm³
atomic weight of Ag,
= 107.87 g/mol
atomic weight of iron,
= 106.4 g/mol
Step 1: determine the average density of the alloy


Step 2: determine the average atomic weight of the alloy


Step 3: determine unit cell volume

for a FCC crystal structure, there are 4 atoms per unit cell; n = 4

Step 4: determine the unit cell edge length
Vc = a³
= 0.405 nm
Therefore, the unit cell edge length for the alloy is 0.405 nm
Answer:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant.
Explanation:
hope this helped!
Answer:
an uneven charge between the oxygen molecule and 2 hydrogen molecules
Explanation: