Major Plates
Africa Plate
Antarctic Plate
Indo-Australian Plate
Australian Plate
Eurasian Plate
North American Plate
South American Plate
<span>Pacific Plate
Minor Plates
There are dozens of smaller plates, the seven largest of which are:
</span>Arabian Plate
Caribbean Plate
Juan de Fuca Plate
Cocos Plate
Nazca Plate
Philippine Sea Plate
<span>Scotia Plate</span>
Answer:
- <em>The solution that has the highest concentration of hydroxide ions is </em><u>d. pH = 12.59.</u>
Explanation:
You can solve this question using just some chemical facts:
- pH is a measure of acidity or alkalinity: the higher the pH the lower the acidity and the higher the alkalinity.
- The higher the concentration of hydroxide ions the lower the acidity or the higher the alkalinity of the solution, this is the higher the pH.
Hence, since you are asked to state the solution with the highest concentration of hydroxide ions, you just pick the highest pH. This is the option d, pH = 12.59.
These mathematical relations are used to find the exact concentrations of hydroxide ions:
- pH + pOH = 14 ⇒ pOH = 14 - pH
- pOH = - log [OH⁻] ⇒
![[OH^-]=10^{-pOH}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D)
Then, you can follow these calculations:
Solution pH pOH [OH⁻]
a. 3.21 14 - 3.21 = 10.79 antilogarithm of 10.79 = 1.6 × 10⁻¹¹
b. 7.00 14 - 7.00 = 7.00 antilogarithm of 7.00 = 10⁻⁷
c. 7.93 14 - 7.93 = 6.07 antilogarithm of 6.07 = 8.5 × 10⁻⁷
d. 12.59 14 - 12.59 = 1.41 antilogarithm of 1.41 = 0.039
e. 9.82 14 - 9.82 = 4.18 antilogarithm of 4.18 = 6.6 × 10⁻⁵
From which you see that the highest concentration of hydroxide ions is for pH = 12.59.
Answer:
Collisions between gas particles are elastic; there is no net gain or loss of kinetic energy.
Explanation:
When a gas is paced in a container, the molecules of the gas have little or no intermolecular interaction between them. There is a lot of space between the molecules of the gas.
The gas molecules move at very high speed and collide with each other and with the walls of container.
The collision of these particles with each other is perfectly elastic hence the kinetic energy of the colliding gas particles do not change.
Answer:
Option B. 176g/mol
Explanation:
We'll begin by writing the chemical formula for hexasodium difluoride. This is given below:
Hexasodium means 6 sodium atom
Difluoride means 2 fluorine atom.
Therefore, the formula for hexasodium difluoride is Na6F2.
The relative formula mass of a compound is obtained by simply adding the atomic masses of the elements present in the compound.
Thus, the relative formula mass of hexasodium difluoride, Na6F2 can be obtained as follow:
Molar mass of Na = 23g/mol
Molar mass of F = 19g/mol
Relative formula mass Na6F2 = (23x6) + (19x2)
= 138 + 38
= 176g/mol
Therefore, the relative formula mass of hexasodium difluoride, Na6F2 is 176g/mol