Answer:
The answer is β=0,85 rads
Explanation:
As the ladder is leaning against the building, we can imagine there´s a triangle where 20ft is the hypotenuse and 15ft is the maximum vertical distance between the ladder and the ground, it means, the leg opposite to β which is the angle we need
Let β(betha) be the angle between the ladder and the ground
We also know that 
In this case we will need to find β, this way:

Then β=48,6°
We also have that 2πrads is equal to 360°, in this way we find how much β is in radians:

then we find β=0,85rads
Frequency = 1/time period = 1/0.05 = 20s^-1.
The answers include the following:
- The unit of length most suitable for measuring the thickness of a cell phone is a meter.
- The unit of length most suitable for measuring the height of a backyard tree is a meter.
<h3>What is Meter?</h3>
This is defined as the standard unit for measuring the length of a body and is denoted as m.
Height is a vertical type of length which is why meter was chosen as the most appropriate choice.
Read more about Meter here brainly.com/question/1578784
#SPJ1
Answer:
Explanation:
Given
time taken 
Speed acquired in 2 sec 
Here initial velocity is zero 
acceleration is the rate of change of velocity in a given time


Distance travel in this time

where
s=displacement
u=initial velocity
a=acceleration
t=time


so Jet Plane travels a distance of 42 m in 2 s
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>