Answer:
The forward reaction is exothermic.
Explanation:
- Le Châtelier's principle states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- When the mixture turned darker brown, this means that the reaction is shifted towards the left direction (reactants side).
- The temperature is increased and the reaction shifted to the reverse direction, this means that the forward direction is exothermic.
- Exothermic reaction releases heat and when increasing the temperature, the reaction will be shifted to the reverse direction to suppress the effect of increasing the temperature.
- <em>So the right choice is: The forward reaction is exothermic. </em>
<em></em>
Answer: Hammer, anvil and stirrup are small bones in the ear behind ear drum and before cochlea. These bones helps in transfering the vibrations from ear drum to the cochlea which is further passed to auditory nerve and then to brain
Explanation:
Here's a short answer
Bye Felicia
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:
which is equivalent to
The question states that the second equation has an enthalpy, or "heat", of neutralization of . Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce or of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of .
The solution has a specific heat of . The solution thus have a heat capacity of . Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of , meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy. are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.