Correct answer: "A. Energy from an outside source is continuously being added."
An endothermic reaction is a reaction that is characterised by the system absorbing energy from its surroundings. That energy is usually in heat form. For example, when mixing water<span> with potassium chloride, this reaction will absorb heat and the container will feel cold - endothermic reaction.</span>
A possible cause of a large percentage of error in an
experiment where MgO is produced from the combustion of magnesium would be not all of the Mg has
completely reacted. <span>
I hope this helps and if you have any further questions, please don’t hesitate
to ask again. </span>
Answer:
Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
Explanation:
Answer:
4.17e+22 atoms of tin are present in the cube
Explanation:
We don't require the size of the cube. With the mass and the molar mass of tin = 118.7 amu we can find moles of Tin. As 1 mol = 6.022x10²³ atoms we can find the number of atoms:
<em>Moles Tin:</em>
8.21g * (1mol / 118.7g) = 0.0692 moles Tin
<em>Atoms Tin:</em>
0.0692 moles Tin * (6.022x10²³ atoms / mol) =
<h3>4.17e+22 atoms of tin are present in the cube</h3>
Answer:
If a gas has experienced a small increase in volume but has maintained the same pressure and number of moles, the temperature of the gas will DROP.
Explanation:
According to Boyle’s law of ideal gases, volume and temperature of a gas is inversely related, as long as the pressure is kept constant;
P₁V₁/T₁ = P₂V₂/T₂
Therefore, if the volume of the gas increases, the temperature will definitely decrease due to the inverse relationship. The gas will get cooler.
Learn More:
For more on Boyle's Law check out;
brainly.com/question/13362447
brainly.com/question/2568628
brainly.com/question/12049334
#LearnWithBrainly