According the VSEPR theory the molecular geometry for CH3+ is triagonal planar
Answer:
Explanation:
molar volume at STP=22.4 L
given volume=50.0 L
number of moles=given volume/molar volume
number of moles=50.0/22.4
number of moles=2.2
1 mole of helium =6.023*10^23 atoms
2.2 moles of helium =6.023*10^23*2.2=1.3*10^24
therefore 50.0 L of helium contain 1.33*10^24 atoms
Answer:
2.28 × 10^-3 mol/L
Explanation:
The equation for the equilibrium is
CN^- + H2O ⇌ HCN + OH^-
Ka = 4.9 × 10^-10
KaKb = Kw
4.9 × 10^-10 Kb = 1.00 × 10^-14
Kb = (1.00 × 10^-14)/(4.9 × 10^-10) = 2.05 × 10^-5
Now, we can set up an ICE table
CN^- + H2O ⇌ HCN + OH^-
I/(mol/L) 0.255 0 0
C/(mol/L) -x +x +x
E/(mol/L) 0.255 - x x x
Ka = x^2/(0.255 - x) = 2.05 × 10^-5
Check for negligibility
0.255/(2.05 × 10^-5) = 12 000 > 400. ∴ x ≪ 0.255
x^2 = 0.255(2.05 × 10^-5) = 5.20 × 10^-6
x = sqrt(5.20 × 10^-6) = 2.28 × 10^-3
[OH^-] = x mol/L = 2.28 × 10^-3 mol/L
The number of moles of aluminium that are needed to react completely with 13.2 moles of FeO is 8.8 moles
calculation
2Al + 3FeO → 3aFe +Al2O3
by use of of mole ratio of Al: FeO from equation above = 2:3 the moles of Al is therefore
= 13.2 x 2/3=8.8 moles of Al
Answer:
2Na(s) + 2H2O(l) ------> 2NaOH(aq) + H2(g)
Explanation: