The volume of N₂ at STP=56 L
<h3>Further explanation</h3>
Given
2.5 moles of N₂
Required
The volume of the gas
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, the volume per mole of gas or the molar volume-Vm is 22.4 liters/mol.
So for 2.5 moles gas :

Answer:
The correct option is: Carbonate ion < Carbon dioxide < Carbon monoxide
Explanation:
Bond energy is defined as the average energy needed to break a chemical covalent bond and signifies the strength of chemical covalent bond.
The bond strength of a covalent bond depends upon the <u>bond length and the bond order.</u>
Carbon monoxide molecule (CO) has two covalent bond and one dative bond. Bond order 2.6
Carbon dioxide (CO₂) has two carbon-oxygen (C-O) double bonds of equal length. Bond order 2.0
Carbonate ion (CO₃²⁻) has three C-O partial double bonds. Bond order 1.5
Also, the bond length is <u>inversely proportional to the bond order and bond strength.</u>
Therefore, <u>order of C-O bond length:</u> Carbon monoxide<Carbon dioxide<Carbonate ion
<u>Order of C-O bond order</u>: Carbonate ion<Carbon dioxide<Carbon monoxide
<u>Order of C-O bond strength or energy</u><u>: Carbonate ion<Carbon dioxide<Carbon monoxide</u>
Hey there mate ;), Im Benjemin and lets solve your question.
★ (Alkanes) : forms single bonds between carbon atoms.
The first four elements are gases and others are liquid in state.
★(Alkenes) : forms double bonds between carbon atoms.
The first three alkenes are gases and rest are liquid.
★ (Alkynes) : forms triple bonds between carbon atoms.
First three are gases and the last one is liquid.
According to boiling point :
The larger structure of the hydrocarbons, the higher the boiling points they have.
In the 3 tables, we can see that the boiling point increases.
Condensation is the change of water from its gaseous form (water vapor) into liquid water. Condensation generally occurs in the atmosphere when warm air rises, cools and looses its capacity to hold water vapor. As a result, excess water vapor condenses to form cloud droplets.