Answer: 2.02 J/g°C
Explanation:
To find the heat capacity, we have to manipulate the equation for heat.
q=mCΔT becomes C=q/(mΔT) to find heat capacity. Since we are given our values, we can plug in to find C.

*Please ignore the capital A in front of the °C. In order to have ° in the equaiton, the A pops up.

Hi There! :)
Active <span>transport requires the use of energy. :)
Therefore A</span>
What you have to do is find a periodic table and add the mass of each atom that the compound is made of.
Ca= 40.1
O= 16.0
H= 1.01
keep in mind that you have to also account for how many atoms of each there are in the molecule. for example, in Ca(OH)2, there are one Ca, two O and two H
so the molar mass of Ca(OH)2= 40.1 + (2 x 16.0) + (2 x 1.01)= 74.12 g/mol
VOLUME= 5cm*10cm*2cm =100cm^3
but density of iron=7.874g/cm^3
mass=7.874g*100 =787.4g
mass of that block = 787.4g