Answer: Friction
Explanation:
Friction and the normal force would be the two initial forces to overcome.
Answer:
The distance is
Explanation:
From the question we are told that
The initial speed of the electron is 
The mass of electron is 
Let
be the distance between the electron and the proton when the speed of the electron instantaneously equal to twice the initial value
Let
be the initial kinetic energy of the electron \
Let
be the kinetic energy of the electron at the distance
from the proton
Considering that energy is conserved,
The energy at the initial position of the electron = The energy at the final position of the electron
i.e

are the potential energy at the initial position of the electron and at distance d of the electron to the proton
Here 
So the equation becomes

Here
are the charge on the electron and the proton and their are the same since a charge on an electron is equal to charge on a proton
is electrostatic constant with value 
i.e
is the velocity at distance d from the proton = 2
So the equation becomes

![\frac{1}{2} mv_i^2 = 4 [\frac{1}{2}mv_i^2 ]- \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv_i%5E2%20%20%3D%204%20%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D-%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
![3[\frac{1}{2}mv_i^2 ] = \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=3%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D%20%3D%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
Making d the subject of the formula



Answer:
Writing with a pencil. The pencil pushes on the paper. The paper pushes on the pencil.
Explanation:
Newton's third law.
You will need rocks brick and water.
Answer:
Force and Motion
Explanation:
Please mark as brainliest