Answer:
The mass of 0.02 m³ of gold is 386 kilograms
Explanation:
Given:
The density of the gold = 19300 kg/m³.
The volume of gold = 0.02 m³
To Find:
The mass of gold = ?
Solution:
We know that density is mass divided per unit volume.
Thus mathematically
Density = \frac{mass}{volume}Density=
volume
mass
Rewriting in terms of mass ,
Mass = density * volume
On substituting the known values
Mass = 19300 kg/m³ * 0.02 m³
Mass = 386 kilograms
Learn more about Mass and Density:
Mass=?,volume=190,density=4
Mass 350 kg volume 175 density ans
This is not my answer I copied it but hope it helps:)
1) Refraction
2)Reflection
3)Concave
4)Convex
I took the test and got this right so you can believe me :)
Hope this helps
Option(a) the mass of cart 2 is twice that of the mass of cart 1 is the right answer.
The mass of cart 2 is twice that of the mass of cart 1 is correct about the mass of cart 2.
Let's demonstrate the issue using variables:
Let,
m1=mass of cart 1
m2=mass of cart 2
v1 = velocity of cart 1 before collision
v2 = velocity of cart 2 before collision
v' = velocity of the carts after collision
Using the conservation of momentum for perfectly inelastic collisions:
m1v1 + m2v2 = (m1 + m2)v'
v2 = 0 because it is stationary
v' = 1/3*v1
m1v1 = (m1+m2)(1/3)(v1)
m1 = 1/3*m1 + 1/3*m2
1/3*m2 = m1 - 1/3*m1
1/3*m2 = 2/3*m1
m2 = 2m1
From this we can conclude that the mass of cart 2 is twice that of the mass of cart 1.
To learn more about inelastic collision visit:
brainly.com/question/14521843
#SPJ4
Get your numbers gathered up and solve the problem in the ordered step
Expression to calculate energy from voltage: E= V*Q where E= energy, V= voltage, and Q= charge
Additional help:
-To find the Voltage ( V )
[ V = I x R ] V (volts) = I (amps) x R (Ω)
-To find the Current ( I )
[ I = V ÷ R ] I (amps) = V (volts) ÷ R (Ω)
-To find the Resistance ( R )
[ R = V ÷ I ] R (Ω) = V (volts) ÷ I (amps)
I hope that helps to some extent-