The concentrations : 0.15 M
pH=11.21
<h3>Further explanation</h3>
The ionization of ammonia in water :
NH₃+H₂O⇒NH₄OH
NH₃+H₂O⇒NH₄⁺ + OH⁻
The concentrations of all species present in the solution = 0.15 M
Kb=1.8 x 10⁻⁵
M=0.15
![\tt [OH^-]=\sqrt{Kb.M}\\\\(OH^-]=\sqrt{1.8\times 10^{-5}\times 0.15}\\\\(OH^-]=\sqrt{2.7\times 10^{-6}}=1.64\times 10^{-3}](https://tex.z-dn.net/?f=%5Ctt%20%5BOH%5E-%5D%3D%5Csqrt%7BKb.M%7D%5C%5C%5C%5C%28OH%5E-%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.15%7D%5C%5C%5C%5C%28OH%5E-%5D%3D%5Csqrt%7B2.7%5Ctimes%2010%5E%7B-6%7D%7D%3D1.64%5Ctimes%2010%5E%7B-3%7D)
![\tt pOH=-log[OH^-]\\\\pOH=3-log~1.64=2.79\\\\pH=14-2.79=11.21](https://tex.z-dn.net/?f=%5Ctt%20pOH%3D-log%5BOH%5E-%5D%5C%5C%5C%5CpOH%3D3-log~1.64%3D2.79%5C%5C%5C%5CpH%3D14-2.79%3D11.21)
Answer:
5.5 L
Explanation:
First we <u>convert 10 g of propane gas</u> (C₃H₈) to moles, using its <em>molar mass</em>:
- 10 g ÷ 44 g/mol = 0.23 mol
Then we <u>use the PV=nRT formula</u>, where:
- P = 1 atm & T = 293 K (This are normal conditions of T and P)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
1 atm * V = 0.23 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 K
Answer:
N2O2(g) +O2(g) ===> 2NO2(g)
Explanation:
For a nonelementary reaction, the reaction equation is described as the sum of all the steps involved. All these steps constitute the reaction mechanism. Each step in the mechanism is an elementary reaction. The rate law of the overall reaction involves the rate determining step (slowest step) in the reaction sequence.
Now look at the overall reaction 2NO(g) + O2(g) ---------> 2NO2(g)
The two steps in the mechanism are
2NO(g) --------->N2O2(g) (fast)
N2O2(g) +O2(g) -------> 2NO2(g) (slow)
Summing all the steps and cancelling out the intermediate N2O2(g), we obtain the reaction equation;
2NO(g) + O2(g) ---------> 2NO2(g)
Hence the answer.
(a)- Time
(b)- Heat produced(i guess)
(c)- Material
this is what I think, hope it helps
The volume of the gas that occupy at STP is 165. 28 cm^3
calculation
by use of combined gas law that is P1V1/T1=P2V2/T2, where
P1=84.6 kpa
T1=23.5 +273=296.5 K
V1=215 cm^3
At STP T= 273 K and P= 101.325 Kpa
therefore p2 = 101.325 Kpa and T2 = 272 K V2=?
by making V2 the subject of the formula V2 =T2P1V1/P2T1
V2 = 273 K x 84.6 Kpa x 215 cm^3/ 101,.325 Kpa x296.5 K =165.28 cm^3