According to Dalton's Atomic Theory, the <em>Law of Definite Proportion is applied when a compound is always made up by a fixed fraction of its individual elements.</em> This is manifested by the balancing of the reaction.
The reaction for this problem is:
H₂ + Cl₂ → 2 HCl
1 mol of H₂ is needed for every 1 mole of Cl₂. Assuming these are ideal gases, the moles is equal to the volume. So, if equal volumes of the reactants are available, they will produce twice the given volumes of HCl.
Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is
I think it’s , D. This can cause sonic booms that can damage building structures
C. Spacecraft are built to be airtight.