The mass and volume has direct proportional to each other.
<h3>What is the relationship between mass and volume?</h3>
The volume of the object is directly proportional to its mass which means that if the volume increases the mass of the object increases also increase and vice versa. Due to this direct relationship, the line of regression will go straight between X and Y axis.
So we can conclude that mass and volume has direct proportional to each other.
Learn more about volume here: brainly.com/question/1972490
#SPJ1
Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C
Answer:
<h3>Density of the Gas</h3>
Explanation:
More molecules mean more hits against the container walls. Increasing the number of particles means you have increased the density of the gas. This third factor is part of the ideal gas law, which explains how these three factors -- temperature, volume and density -- interact with each other.
The answer to the question
stated above is:
<span> Gas is easily compressible because the molecules of a gas are much further apart than
those of a solid.</span>
characteristic properties of gases:
(1) they are easy to compress,
(2) they expand to fill their containers, and
(3) they occupy far more space than the liquids or solids
from which they form.