Answer:
4Fe + 3O₂ → 2Fe₂O₃
Explanation:
Fe → ²⁺
O → ²⁻
But Iron III is Fe³⁺
So we have Fe³⁺ and O²⁻, the formula for the oxide must be Fe₂O₃ so the equation can be:
4Fe + 3O₂ → 2Fe₂O₃
the energy gained by proteins and carbohydrates differs from the energy gained by fats.
proteins and carbohydrates both give 4 kcal per gram
fats give 9 kcal per gram
mass of proteins - 2 g
energy given by proteins - 2 g x 4 kcal/g = 8 cal
mass of carbohydrates - 20 g
energy given by carbohydrates - 20 g x 4 kcal/g = 80 cal
mass of fat - 1 g
energy given by fat - 1 g x 9 kcal/g = 9 cal
total energy = 8 + 80 + 9 = 97 kcal
energy = 97 kcal
Explanation:
Atoms can join together - they form bonds together - to make MOLECULES. ... For example, a hydrogen atom forms one bond, an oxygen atom forms two, and carbon forms four bonds. Look at that molecule of water again - each hydrogen has one bond, and the oxygen in the middle has two bonds. Molecules can be much bigger.
Answer:

Explanation:
In this case, we can start with the reaction:

If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:


Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):


The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:

Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol
= 48 g
(therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:

I hope it helps!