Okay
Mr (H2O)= 18g
therefore moles of H2O
is 720.8/18= 40.04mol
the ratio of H2 to O2 to H2O is
2 : 1 : 2
so moles of H2 is same as H2O here
H2= 40.04moles
moles of O2 is half
so 40.04 x 0.5
20.02moles
grams of O2 is
its moles into Mr of O2
that's 20.02 x 32 = 640.64g
The rate equation is given as:
k = A e^(- Ea / RT)
Dividing state 1 and state 2:
k1/k2 = e^(- Ea / RT1) / e^(- Ea / RT2)
k1/k2 = e^[- Ea / RT1 - (- Ea / RT2)]
k1/k2 = e^[- Ea / RT1 + Ea / RT2)]
Taking the ln of both sides:
ln (k1/k2) = - Ea / RT1 + Ea / RT2
ln (k1/k2) = - Ea / R (1/T1 - 1/T2)
Since k2 = 4k1, therefore k1/k2 = ¼
ln (1/4) = [- (56,000 J/mol) / (8.314 J / mol K)] (1/273
K – 1/ T2)
2.058 x 10^-4 = 1/273 – 1/T2
T2 = 289.25 K
Answer:
ffgghhhhhgffffffcvvvvvvvvvvvvvvvvvv
Explanation:
cccvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Answer: The answer is True
Explanation: I hope my answer helps :)
Data:
Molar Mass of NaOH = 40 g/mol
Solving: <span>According to the Law Avogradro, we have in 1 mole of a substance, 6.02x10²³ atoms/mol or molecules
</span>
1 mol -------------------- 6.02*10²³ molecules
y mol -------------------- 2.70*10²² molecules
6.02*10²³y = 0.270*10²³


Solving: <span>Find the mass value now
</span>
40 g ----------------- 1 mol of NaOH
x g ------------- 0.04 mol of NaOH


Answer:
The mass is 1.6 grams