To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 
Pitch is directly related to the frequency of the sound. In this item, we are given that the frequency of the sound is higher compared to those which are audible to the human being's ears. The pitch therefore of the dog's whistle is high.
On the other hand, the frequency and the wavelength of a certain wave are inversely proportional. This means that the high frequency wave will have a short wavelength.
Hence, the answer to this item would have to be "high pitch with a short wavelength"
The answer to this item is the second option.
Gravitational potential energy i think
Answer:
a

b

Explanation:
From the question we are told that
The mass of the person is 
The speed of the person is 
The energy of the proton is 
Generally the de Broglie wavelength is mathematically represented as

Here h is the Planck constant with the value

So

=> 
Generally the energy of the proton is mathematically represented as

Here
is the mass of proton with value 
=> 
=> 
=> 
So

so 
=> 
Answer:

Explanation:
First we have to find the time required for train to travel 60 meters and impact the car, this is an uniform linear motion:

The reaction time of the driver before starting to accelerate was 0.50 seconds. So, remaining time for driver is 1.5 seconds.
Now, we have to calculate the distance traveled for the driver in this 0.5 seconds before he start to accelerate. Again, is an uniform linear motion:

The driver cover 10 meters in this 0.5 seconds. So, the remaining distance to be cover in 1.5 seconds by the driver are 35 meters. We calculate the minimum acceleration required by the car in order to cross the tracks before the train arrive, Since this is an uniformly accelerated motion, we use the following equation:
